Sensitivity and Uncertainty Analysis of Physical Parameterization and Initial Conditions on Meteorological Variables and CO₂ Mole Fractions

Liza I. Díaz-Isaac¹, Thomas Lauvaux¹, Kenneth J. Davis¹, Natasha Miles¹, Scott Richardson¹, Marc Bocquet²

¹The Pennsylvania State University, ²Université Paris-Est

Contact: Izd120@psu.edu

Support: This research was supported by NASA Terrestrial Ecosystems and Carbon Cycle Program, NASA's Earth Venture Suborbital Program and Alfred P. Sloan Graduate Fellowship.

Motivation

 Atmospheric inversions uses atmospheric transport models to estimate carbon fluxes by adjusting these fluxes to be optimally consistent with observed CO₂ concentrations.

- The inverse system assumes that transport models are only affected by random errors and that systematic errors are unique to prior fluxes.
- This method assumes that the atmospheric transport model uncertainties are known. This leads to model errors that propagate to inverse (or posterior) fluxes, limiting the quality of the optimization.
- The atmospheric inverse system will be more reliable if the atmospheric transport errors are quantified rigorously and if the transport model is unbiased.

Objectives

- Quantify the impact of both physics parameterizations and meteorological reanalyses on CO₂ mole fractions.
- Quantify transport errors and explore how sensitive they are to the physics parameterization and reanalysis product.
- Generate a calibrated atmospheric transport ensemble with accuracy and spread that represent systematic and random transport errors.

Multi-Physics Ensemble

- Our 45-member ensemble is created with the Weather Research and Forecasting (WRF) model that includes the chemistry module (WRF-Chem).
- This ensemble was built using different physical parameterizations and meteorological initial conditions (IC) and lateral boundary conditions (LBC) (see diagram).

Domain: Centered in Iowa, covering 1600 km × 1600 km, with 10 km grid resolution

CO₂ Flux and LBC: CarbonTracker (CT) data assimilation system developed at NOAA (Peters et al., 2007)

Period: June 17 to July 21 of 2008

Data

- To evaluate and calibrate the ensemble we use observations from 14 rawinsonde sites (*red circles* in the map).
- Wind speed, wind direction and planetary boundary layer height (PBLH) data was evaluated at 0000 UTC.
- PBL depth was estimated using the virtual potential temperature gradient $(∇θ_ν)$ ≥ 0.2 K/m.

Minnesota South Dakota Nebraska Nebraska Missouri Kentucky Oklahoma Arkansas Arkansas -100 -95 -90 -85

Sensitivity Analysis & Model Performance

Impact of Transport Errors on [CO₂]

- LSMs, PBL schemes, Cumulus parameterizations (CP) and Reanalysis all have a big impact on wind speed, wind directions and PBL 300 height errors.
- The order of impact in PBL height errors is similar to the CO₂ mole fraction errors.

700 600 500 400 200 100 LSM PBL CP MP Rea. Physics/Reanalysis

Unbiased Model

 We estimated the bias over a month for each member of the ensemble (represented by the different color bars).

- For wind speed most of the sites shows a positive bias, whereas for wind direction most of the sites show both positive and negative bias.
- It is hard to define the best configurations for wind speed and wind direction.
 PBL Height Bias at OAX Site
- For PBLH most of the sites shows both positive and negative bias.
- PBL height bias is controlled by both the LSMs and PBL schemes.
- PBL height biases can be sorted by model configuration.

Ensemble Calibration

Rank Histogram Score & Bias

Rank Histogram: This tool is used to diagnose the bias and the dispersion of the ensemble. An ensemble that is not biased and neither underdispersive nor overdispersive will have a flat rank histogram.

- Rank Histogram Score (RHS): This metric is used to measure the flatness of the rank histogram and should be close to 1.
- **Bias:** The bias of the residuals (model-data difference) is used as an additional criteria to choose a sub-ensemble that has an equal or lower bias than the full ensemble.

Variable	RHS	Bias
Wind Speed	6.1	0.66 m
Wind Direction	7.2	-0.41 deg.
PBL Height	3.2	98 m

- The RHS of the full ensemble is higher than one for all the variables.
 PBI height shows the lowest RHS
- PBL height shows the lowest RHS.
 Wind speed and PBL height have positive bias and wind direction shows a negative bias.

Ensemble Calibration Technique

Simulated Annealing (SA):

- General probabilistic local search algorithm proposed by Kirkpatrck et al., (1983).
- This optimization method uses a cost function to find the global minimum or optimal solution, in our case a sub-ensemble with a rank histogram score close to one.

Calibrated Ensemble

- SA technique was applied to calibrate our ensemble for 10, 8 and 5-member sub-ensembles (Garaud and Mallet, 2011).
- The selected sub-ensemble, should have a RHS and bias smaller than the full ensemble.

Calibrated Ensemble 10-members:

- Wind speed and wind direction still generate a U-shape rank histogram with this calibrated ensemble.
- PBL height has a flat rank histogram and the smallest RHS
- compare to the rest of the variables.
 Simulated Annealing (green) allows us to find a sub-ensemble that has a smaller bias than the full ensemble (blue above).

S. S	Variable	RHS	Bias
3 [WSPD	4.6	0.53 m/s
	WDIR	6.3	-0.21 deg.
	PBLH	1.6	78 m

Synthesis

Not only the PBL schemes have a significant impact in CO₂ mole fractions, other physics schemes such as LSM and Cumulus parameterizations contribute to CO₂ variability.

- The configuration performance varies over the domain, therefore making it hard to select the best configuration.
- PBL depth bias can be reduced, therefore a best configuration (less bias) exists for this factor alone.
- From a 45-members ensemble, we were able to create a sub-ensemble of 10-members that shows an appropriate spread and smaller bias.

Future Work: Evaluate Calibrated Ensemble

Transport errors show large temporal variability Interpretation of hourly ensemble-based error variances:

- Model-data differences larger than transport errors: flux signals still present
- Observations within transport error bounds: no flux signal left